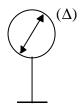


COURS

OPTIQUE ONDULATOIRE

CH.30bis: POLARISATION DE LA LUMIERE

<u>Plan</u> (Cliquer sur le titre pour accéder au paragraphe)



CH.30bis:	POLARISATION DE LA LUMIERE
I. POLA	POLARISATION DE LA LUMIERE RISEURS
I.1.	DEFINITION
I.2.	LOI DE MALUS
II. LAME	S UNIAXES.
II.1.	DEFINITION
II.2.	PROPRIETES
II.3.	ACTION D'UNE LAME UNIAXE SUR UNE LUMIERE POLARISEE
II.3.1.	Polarisation rectiligne
II.3.2.	Polarisation circulaire et lame quart d'onde
II.4.	PRODUCTION ET ANALYSE D' UNE LUMIERE POLARISEE
	FFERENTS TYPES DE POLARISEURS
III.1.	POLARISATION PAR DICHROISME
III.1.1.	Principe
III.1.2.	Caractéristiques des polaroïds
III.2.	POLARISATION PAR BIREFRINGENCE

I. POLARISEURS

I.1. <u>DEFINITION</u>

- Un polariseur est un système optique permettant de transformer une lumière de polarisation quelconque en lumière polarisée **rectilignement**.
- On peut représenter un tel dispositif par :

L'axe (Δ) indique la direction de vibration du champ électrique \vec{E} émergent; en général, l'utilisateur a la possibilité de faire tourner (Δ) par rapport à une monture fixe.

I.2. LOI DE MALUS

ullet Si l'on dispose l'un derrière l'autre deux polariseurs dont les directions de polarisation font entre elles un angle $m{a}$, on obtient à la sortie une onde lumineuse polarisée rectilignement (dans la direction imposée par le second polariseur) et dont l'intensité I_2 s'exprime en fonction de l'intensité I_1 en sortie du premier polariseur, par la relation :

$$I_2 = I_1 \times T \times \cos^2 \mathbf{a}$$
 avec : $0 \le T \le 1$

- **Rq1**: T est le facteur de transmission en énergie du second polariseur (pour T=1, le polariseur est idéal, c'est-à-dire sans absorption).
 - Rq2: le second polariseur est également appelé « analyseur ».
 - **Rq3**: pour a = p/2 ou 3p/2, il y a extinction du faisceau lumineux, on dit que les polariseurs sont « **croisés** ».

Page 1 Christian MAIRE © EduKlub S.A.

COURS

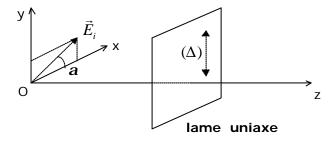
II. LAMES UNIAXES

II.1. <u>DEFINITION</u>

Ce sont des lames minces, à faces parallèles, taillées dans un cristal « uniaxe », ayant la **symétrie de révolution (**d'un point de vue des propriétés optiques) autour d'un axe privilégié appelé « axe optique » ; par construction, cet axe est parallèle aux faces de la lame.

II.2. PROPRIETES

- ullet Considérons une lame uniaxe dont les faces sont parallèles au plan xOy, et d'épaisseur e selon la direction de propagation de la lumière.
- Choisissons l'axe Oy parallèle à l'axe optique (Δ) de la lame :
- ullet pour une onde polarisée rectilignement suivant Ox (perpendiculairement à l'axe Δ), la lame possède un indice « **ordinaire** », soit n_{o} .
- ullet pour une onde polarisée rectilignement suivant Oy (parallèlement à l'axe Δ), la lame possède un indice « **extraordinaire** », soit $n_{\scriptscriptstyle E}$.
- ullet Entre deux ondes monochromatiques (de longueur d'onde $m{l}_0$) polarisées respectivement suivant Oy et Ox, la traversée de la lame d'épaisseur e entraı̂ne l'apparition d'un déphasage supplémentaire $m{j}$ tel que :


$$\mathbf{j} = \mathbf{j}_{y/x} = 2\mathbf{p} \frac{\mathbf{d}_{y/x}}{\mathbf{I}_0} = \frac{2\mathbf{p}e}{\mathbf{I}_0} (n_E - n_O)$$
 (1)

- Cas particuliers :
 - si $|d_{y/x}| = I_0/4$: $|j| = p/2 \Rightarrow$ la lame est dite « quart d'onde », ou « lame I/4 ».
 - si $\left| \boldsymbol{d}_{y/x} \right| = \boldsymbol{I}_0 / 2$: $\left| \boldsymbol{j} \right| = \boldsymbol{p}$ \Rightarrow la lame est dite « **demi onde** », ou « lame $\boldsymbol{I} / 2$ ».
- **Rq1**: l'axe pour lequel l'indice est le plus grand correspond à une vitesse de propagation de l'onde (v=c/n) plus petite : on parle « **d'axe lent** » ; logiquement, l'axe pour lequel l'indice est le plus petit est appelé « **axe rapide** ».

Rq2: si $n_E \succ n_O$, le milieu est dit «**positif** », l'axe extraordinaire est alors l'axe lent, l'axe ordinaire étant l'axe rapide (c'est le cas du quartz SiO_2); si $n_E \prec n_O$, le milieu est dit « **négatif** » et les dénominations sont inversées (cas de la calcite $CaCO_3$).

II.3. ACTION D' UNE LAME UNIAXE SUR UNE LUMIERE POLARISEE

II. 3.1. Polarisation rectiligne

On considère une onde incidente se propageant selon Oz, et dont le champ électrique \vec{E}_i est polarisé rectilignement selon une direction faisant un angle \boldsymbol{a} avec l'axe Ox.

L'axe optique de la lame, (Δ) , est parallèle à l'axe Oy.

- Le champ incident s'écrit donc : $\vec{E}_i = E_0 \cos \mathbf{a} \cos(\mathbf{w}t kz)\vec{e}_x + E_0 \sin \mathbf{a} \cos(\mathbf{w}t kz)\vec{e}_y$
- ullet En tenant compte d'un déphasage commun ullet y , dû à la traversée de la lame, et du déphasage supplémentaire $m{j}$, le champ transmis a pour expression :

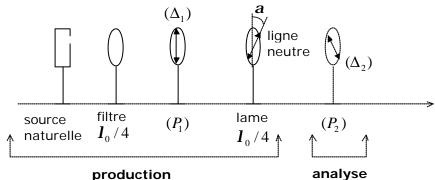
COURS

$$\vec{E}_t = E_0 \cos \mathbf{a} \cos(\mathbf{w}t - kz - \mathbf{y})\vec{e}_x + E_0 \sin \mathbf{a} \cos(\mathbf{w}t - kz - \mathbf{y} - \mathbf{j})\vec{e}_y$$

 ${\bf Rq}:$ pour un angle ${\bf \it a}$ (non orienté) égal à 0 ou ${\bf \it p}/2$, c'est-à-dire pour un champ incident parallèle aux axes Ox ou Oy, le champ transmis conserve la même direction de polarisation : on dit que l'axe optique (Δ) et l'axe qui lui est perpendiculaire constituent les « lignes neutres » de la lame.

- ♦ <u>lame demi onde</u>: |j| = p Þ $\vec{E}_t = E_0 \cos a \cos(wt kz y)\vec{e}_x E_0 \sin a \cos(wt kz y)\vec{e}_y$ ⇒ la polarisation reste **rectiligne**, mais de direction **symétrique** de celle du champ incident par rapport aux lignes neutres de la lame.
- ♦ <u>lame quart d'onde</u>: |j| = p/2 Þ $\vec{E}_t = E_0 \cos a \cos(wt kz y)\vec{e}_x \pm E_0 \sin a \sin(wt kz y)\vec{e}_y \Rightarrow$ la polarisation est devenue **elliptique** (gauche ou droite), les axes de l'ellipse correspondant aux lignes neutres de la lame.

Rq: dans ce dernier cas, si a = p/4, alors $\cos a = \sin a \Rightarrow$ la polarisation est circulaire.


II.3.2. Polarisation circulaire et lame quart d'onde

Considérons cette fois un champ incident de la forme : $\vec{E}_i = E_0 \cos(\mathbf{w}t - kz)\vec{e}_x + E_0 \sin(\mathbf{w}t - kz)\vec{e}_y$ En sortie de la lame $\mathbf{I}/4$, le champ transmis s'écrira :

 $\vec{E}_t = E_0 \cos(\mathbf{w}t - kz)\vec{e}_x + E_0 \sin(\mathbf{w}t - kz \pm \mathbf{p}/2)\vec{e}_y = E_0 \cos(\mathbf{w}t - kz)\vec{e}_x \pm E_0 \cos(\mathbf{w}t - kz)\vec{e}_y \Rightarrow$ la polarisation est devenue **rectiligne**, à **45° des lignes neutres**.

II.4. PRODUCTION ET ANALYSE D' UNE LUMIERE POLARISEE

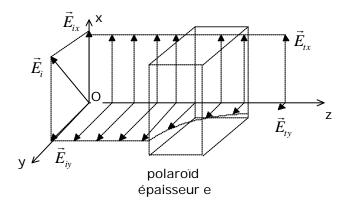
• Proposons un montage permettant de produire et d'analyser une lumière de polarisation quelconque :

- Rq1: comme le suggère la relation (1), à e,n_O,n_E fixés, une lame uniaxe ne peut être rigoureusement quart d'onde que pour une longueur d'onde I_0 fixée \Rightarrow il faut placer un filtre adapté à cette longueur d'onde juste après la source de lumière naturelle (non polarisée).
- **Rq2**: d'après le paragraphe précédent, l'onde en sortie de la lame est, à priori, polarisée **elliptiquement** (gauche ou droite, selon la convention adoptée pour la définition de j et le signe qui en découle ; pour un angle a (angle non orienté, entre directions) égal à zéro, la polarisation reste **rectiligne**, de direction (Δ_1) imposée par le premier polariseur ; enfin, pour un angle a = p/4, la polarisation est **circulaire**.

Rq3: pour une polarisation rectiligne, l'intensité transmise par le polariseur (P_2) passe par un minimum nul lorsqu'on fait tourner l'axe (Δ_2) dans sa monture (les polariseurs sont alors « croisés »); dans le cas d'une polarisation elliptique, l'intensité transmise passe par un minimum non nul, alors qu'il n'y a pas de variation d'intensité pour une polarisation circulaire.

Page 3 Christian MAIRE © EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

COURS


III. DIFFERENTS TYPES DE POLARISEURS

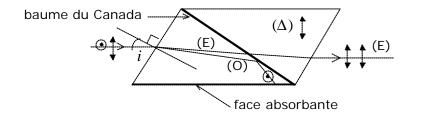
- par **DICHROISME** : exemple des «**polaroïds** » (marque déposée)
- par **BIREFRINGENCE**: exemple du polariseur de Nicol (ou « **nicol** »)
- par réflexion vitreuse sous incidence brewstérienne (cf. exercice 33.5)

III.1. POLARISATION PAR DICHROISME

III.1.1. Principe

- Les polaroïds sont taillés dans des feuilles transparentes d'aspect bleu gris : il s'agit d'un support plastique imprégné de molécules **polarisées** (halogénures).
- Pour une composante de champ électrique \vec{E} parallèle à l'axe des dipôles, ceux-ci vibrent plus fortement que sous l'action d'un champ perpendiculaire à cet axe \Rightarrow il y a plus d'énergie absorbée selon l'axe des dipôles (= axe **d'absorption**) que perpendiculairement à cet axe (= axe de **transmission**) : on a typiquement un milieu **anisotrope**.
- On peut donner le schéma de principe suivant :

Ox = axe de transmission


Oy = axe d'absorption

III.1.2. <u>Caractéristiques des polaroïds</u>

- Les polaroïds sont peu coûteux, minces et peuvent être de grandes dimensions.
- Il y a une légère absorption selon l'axe de transmission, mais surtout l'absorption n'est pas totale selon l'autre axe (pour les fréquences proches du bleu) \Rightarrow la **polarisation** en sortie n'est **pas parfaitement rectiligne** : à travers deux polaroïds croisés, on voit une source de lumière naturelle avec une intensité très atténuée, mais de dominante bleutée.

III.2. POLARISATION PAR BIREFRINGENCE

- ullet Toujours avec un milieu anisotrope, on utilise ici les notions d'indice ordinaire n_o et d'indice extraordinaire n_E définis au paragraphe 2.2.
- Dans un polariseur de Nicol, un cristal de spath (où $n_E \prec n_O$) est scié selon un plan, puis recollé à l'aide d'une substance appelée « baume du Canada », d'indice n_B tel que $n_E \prec n_B \prec n_O$.
- Le fonctionnement d'un tel polariseur est schématisé sur la figure suivante :

 (Δ) = axe optique de la lame

(ici, c'est l'axe rapide)

Page 4 Christian MAIRE © EduKlub S.A.

COURS

- Le champ incident peut se décomposer en une composante parallèle à l'axe (Δ) et une composante perpendiculaire, donnant lieu respectivement à deux rayons extraordinaire et ordinaire lors de la réfraction sur la face d'entrée du polariseur; puisque $n_E \prec n_O$, le rayon (E) est plus réfracté que le rayon (O) \Rightarrow le rayon (O) atteint le plan enduit de baume du Canada sous un angle dincidence plus important : puisque $n_B \prec n_O$, il peut y avoir **réflexion totale** et seul le rayon (E), polarisé suivant la direction (Δ) émergera (pour s'assurer que le rayon (O) est définitivement éliminé, il faut rendre absorbante la face « inférieure » du nicol).
- ullet L'angle dincidence i doit rester inférieur à un angle limite, pour que le rayon ordinaire ne soit pas partiellement transmis à travers le baume du Canada.

 \mathbf{Rq} : il existe des cristaux naturellement dichro $\ddot{\mathbf{q}}$ ues, comme la tourmaline, qui constituent d'excellents polariseurs, mais ils sont chers et de petites dimensions.